- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Fogaren, K_E (2)
-
Palevsky, H_I (2)
-
Le_Bras, I. (1)
-
McRaven, L. (1)
-
Yoder, M_F (1)
-
de_Jong, M_F (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Atmospheric Forcing Dominates the Interannual Variability of Convection Strength in the Irminger SeaAbstract Transformation of light to dense waters by atmospheric cooling is key to the Atlantic Meridional Overturning Circulation in the Subpolar Gyre. Convection in the center of the Irminger Gyre contributes to the formation of the densest waters east of Greenland. We present a 19‐year (2002–2020) weekly time series of hydrography and convection in the central Irminger Sea based on (bi‐)daily mooring profiles supplemented with Argo profiles. A 70‐year annual time series of shipboard hydrography shows that this mooring period is representative of longer‐term variability. The depth of convection varies strongly from winter to winter (288–1,500 dbar), with a mean March mixed layer depth (MLD) of 470 dbar and a mean maximum density reached of 27.70 ± 0.05 kg m−3. The densification of the water column by local convection directly impacts the sea surface height in the center of the Irminger Gyre and thus large‐scale circulation patterns. Both the observations and a Price‐Weller‐Pinkel mixed layer model analysis show that the main cause of interannual variability in MLD is the strength of the winter atmospheric surface forcing. Its role is three times as important as that of the strength of the maximum stratification in the preceding summer. Strong stratification as a result of a fresh surface anomaly similar to the one observed in 2010 can weaken convection by approximately 170 m on average, but changes in surface forcing will need to be taken into account as well when considering the evolution of Irminger Sea convection under climate change.more » « less
-
Yoder, M_F; Palevsky, H_I; Fogaren, K_E (, Journal of Geophysical Research: Oceans)Abstract The subpolar North Atlantic plays an outsized role in the atmosphere‐to‐ocean carbon sink. The central Irminger Sea is home to well‐documented deep winter convection and high phytoplankton production, which drive strong seasonal and interannual variability in regional carbon cycling. We use observational data from moored carbonate chemistry system sensors and annual turn‐around cruise samples at the Ocean Observatories Initiative's Irminger Sea Array to construct a near‐continuous time series of mixed layer total dissolved inorganic carbon (DIC),pCO2, and total alkalinity from summer 2015 to summer 2022. We use these carbonate chemistry system time series to deconvolve the physical and biological drivers of surface ocean carbon cycling in this region on seasonal, annual, and interannual time scales. We find high annual net community production within the seasonally varying mixed layer, averaging 9.8 ± 1.6 mol m−2 yr−1with high interannual variability (range of 6.0–13.9 mol m−2 yr−1). The highest daily net community production rates occur during the late winter and early spring, prior to the observed high chlorophyll concentrations associated with the spring phytoplankton bloom. As a result, the winter and early spring play a much larger role in biological carbon export from the mixed layer than traditionally thought.more » « less
An official website of the United States government
